

Guia de Especificação

Apresentação

A ArcelorMittal Perfilor é uma empresa especializada em soluções para coberturas e fachadas com painéis termoisolantes e complementadas por telhas trapezoidais e zipadas. Inúmeras cores desenvolvidas em revestimentos pré-pintados de alta performance tornam ainda mais ousadas as aplicações.

Para a concepção estrutural, a Perfilor tem um sistema inovador, o steel deck, uma forma metálica em aço galvanizado para laje mista, que dispensa escoramento e armadura positiva.

Linhas curvas, cores intensas, texturas diversificadas, conforto térmico e acústico são necessidades comuns emprojetos arquitetônicos sofisticados, além de durabilidade, resistência mecânica e facilidade de manutenção, premissas consolidadas da linha de produtos da ArcelorMittal Perfilor.

O compromisso em oferecer os melhores sistemas construtivos de aço para todos os tipos de obras, tornam a Perfilor protagonista no mercado.

Índice

Telhas Metálicas Especiais 05
Telha Ondulada LR 17
Telha Trapezoidal LR 25
Telha Trapezoidal LR 33 07
Telha Trapezoidal LR 40
Telha Trapezoidal LR 100
Bandeja Cassete 60
Fixadores e Acessórios
Telhas Curvas
Telhas Perfuradas
Sistema de Cobertura Zipada 15
Telha Zipada LR ZIP 53
Telha Zipada LR ZIP 63
Soluções Termoacústicas 19
Sistema Sanduíche com Lã Mineral
Soluções de Alta Performance Termoacústica
Global Roof®
Global Wall®
Soluções Termoisolantes 25
Painéis Termilor® com Poliisocianurato (PIR)
Características e Especificações
Telha Térmica Termilor Roof® - TR
Painel de Fachada Termilor Wall® - TW
Telha Térmica Termilor Filme® - TF
Fixadores 31
Painéis Termoisolantes de Alto Desempenho
Painel Frigo Termilor Cold® - TC
Sistema de Laje Mista Steel Deck 35
Polydeck 59S®
Revestimentos Metálicos 39
Galvanizado
Galvalume®
Inoxidável
Revestimentos Pré-Pintados 43
Sistema de Pré-Pintura Coil Coating
EcoGris 15
Color 25
Plus 35
Max 60
Ultra 27
Arremates 46
Recomendações Gerais 48
Recomendações Gerais

Posigraf | Curitiba - PR

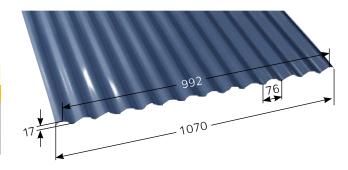
Telha Trapezoidal LR 40 e LR 40 Curva Multidobra na cor Prata

Projeto: Maurício Melara Arquitetura | Foto: Celso Pilati

Loja Abito | Florianópolis - SC

Telha Ondulada LR 17 na cor Laranja

Projeto: Cátia Giancomello e Arquitetos Associados | Foto: André Diogo Moecke



Telhas Metálicas Especiais

Telha Ondulada LR 17

0	Espessura da Chapa (mm)							
Características do Perfil LR 17 (13.76.17)	0,43	0,50	0,65	0,80				
Momento de inércia (cm ⁴ /m)	1,62	1,91	2,53	3,15				
Módulo resistente W (cm³/m)	1,86	2,20	2,92	3,63				
Peso (kg/m²)	3,96	4,61	5,99	7,64				

Assentamento: Vertical Horizontal

Posição Normal: e ≥ 0,50 mm

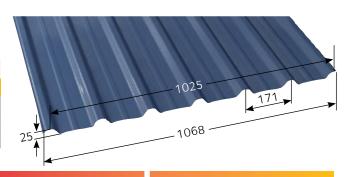
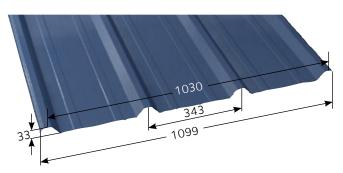

Posição Invertida: não adequada

	Tabela de Sobrecargas Admissíveis (kgf/m²)												Aplic	ações		
	imero Apoios	2 apoios				3 apoios 4 apoios						Cobertura	Fachada			
Vã	o (m)	0,43	0,50	0,65	0,80	0,43	0,50	0,65	0,80	0,43	0,50	0,65	0,80	Caimento:	Assentamento	
	1,00	156	185	245	305	166	196	260	324	208	246	327	407	≥ 5%	Vertical Horizontal	
120	1,20	120	141	187	233	139	164	218	271	174	206	274	340		Tionzontai	
	1,30	93	110	146	182	118	139	185	230	148	175	232	289	Extensão do pano d'água: ≤ 15 m	Posição Norma	
7	1,40	74	87	116	144	101	119	158	197	127	150	200	248		e ≥ 0,50 mm	
Flechal	1,50	59	70	93	116	87	103	137	171	110	130	173	215			
He	1,60	48	57	75	94	76	90	120	149	96	114	151	188	Telha Plana:	Posição Invertida:	
ga	1,70	39	47	62	77	67	79	105	131	85	100	133	166	Raio ≥ 20 m	não adequad	
Sobrecarga	1,80	33	39	51	64	59	70	93	116	71	84	112	139	Tallag Compa	Calandrada:	
bre	1,90	27	32	43	53	53	63	83	104	60	71	94	117		: 0,65 mm	
So	2,00	23	27	36	44	47	56	75	93	51	60	80	99			
	2,10	19	23	30	37	43	50	67	83	43	51	68	85	Perfurada: ch	apa ≥ 0,65 mm	

 $Nota: evitar sobrecarga inferior a 60 \ kgf/m^2. \ Telhas perfuradas a tingem 70\% \ da sobrecarga \ admssível \ indicada.$

Telha Trapezoidal LR 25

	Espessura da Chapa (mm)						
Características do Perfil LR 25 (6.171.25)	0,43	0,50	0,65	0,80			
Momento de inércia (cm ⁴ /m)	4,03	4,75	6,30	7,85			
Módulo resistente W (cm³/m)	2,34	2,75	3,65	4,55			
Peso (kg/m²)	3,82	4,45	5,79	7,38			

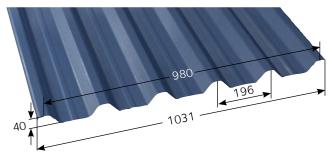

	Tabela de Sobrecargas Admissíveis (kgf/m²)													
Número de Apoios			_	ooios ão 🛆		3 apoios <u>Avão Avão</u> A				4 apoios ☆vão☆vão☆vão☆				
Vão (m)		0,43	0,50	0,65	0,80	0,43	0,50	0,65	0,80	0,43	0,50	0,65	0,80	
	1,40	128	150	200	249	128	150	200	249	161	189	251	313	
50	1,50	111	130	173	216	111	130	173	216	140	164	218	272	
/ 120	1,60	97	114	152	189	97	114	152	189	122	144	191	238	
٦	1,70	86	101	134	167	86	101	134	167	108	127	168	210	
Flecha L	1,80	76	89	119	148	76	89	119	148	96	113	150	187	
	1,90	68	80	106	132	68	80	106	132	86	101	134	167	
ga	2,00	61	71	95	118	61	71	95	118	77	90	120	150	
g	2,10	53	63	84	105	55	64	86	107	69	82	108	135	
Sobrecarga	2,20	46	54	72	90	49	58	77	97	63	74	98	123	
So	2,30	40	47	62	78	45	53	70	88	57	67	86	111	
	2,40	35	41	54	68	41	48	64	80	52	61	82	102	

Cobertura Assentamento: Caimento: Vertical ≥ 5% e ≥ 0,50 mm Extensão do Horizontal pano d'água: e ≥ 0,65 mm ≤ 20 m Posição Telha Plana: Invertida: Raio ≥ 37 m adequada Telha Curva Calandrada: chapa ≥ 0,65 mm Perfurada: chapa ≥ 0,65 mm

 $Nota: evitar sobrecarga inferior \ a \ 60 \ kgf/m^2. \ Telhas perfuradas \ a tingem \ 70\% \ da \ sobrecarga \ admssível indicada.$

Telha Trapezoidal LR 33

0	Espessura da Chapa (mm)							
Características do Perfil LR 33 (3.343.33)	0,43	0,50	0,65	0,80				
Momento de inércia (cm ⁴ /m)	-	5,75	7,60	9,47				
Módulo resistente W (cm³/m)	-	2,15	2,85	3,55				
Peso (kg/m²)	-	4,43	5,76	7,34				


	Tabela de Sobrecargas Admissíveis (kgf/m²)													
Número de Apoios		2 apoios					3 apoios <u>Avão Avão</u> A				4 apoios 			
Vã	o (m)	0,43	0,50	0,65	0,80	0,43	0,50	0,65	0,80	0,43	0,50	0,65	0,80	
	1,40	-	117	155	193	-	117	155	193	-	147	195	243	
0	1,50	-	101	134	167	-	101	134	167	-	127	169	211	
/ 120	1,60	-	88	117	146	-	88	117	146	-	111	148	184	
م لـ	1,70	-	78	103	128	-	78	103	128	-	98	130	162	
Flecha L	1,80	-	69	91	114	-	69	91	114	-	87	116	144	
	1,90	-	61	81	101	-	61	81	101	-	78	103	129	
ga	2,00	-	55	73	91	-	55	73	91	-	70	92	115	
g	2,10	-	49	66	82	-	49	66	82	-	63	83	104	
Sobrecarga	2,20	-	45	59	74	-	45	59	74	-	57	75	94	
So	2,30	-	40	54	67	-	40	54	67	-	52	69	85	
	2,40	-	37	49	61	-	37	49	61	-	47	62	78	

Aplico	ações							
Cobertura	Fachada							
Caimento: ≥ 5%	Assentamento: Vertical Horizontal							
Extensão do pano d'água: ≤ 25 m	Posição Normal: e ≥ 0,65 mm							
Telha Plana: Raio ≥ 40 m	Posição Invertida: não adequada							
Telha Curva Multidobra: chapa ≥ 0,50 mm								
Perfurada: no	ão adequada							

Nota: evitar sobrecarga inferior a 60 kgf/m 2 .

Telha Trapezoidal LR 40

	Espessura da Chapa (mm)						
Características do Perfil LR 40 (5.196.40)	0,43	0,50	0,65	0,80			
Momento de inércia (cm ⁴ /m)	11,13	13,12	17,40	21,68			
Módulo resistente W (cm³/m)	4,39	5,18	6,86	8,55			
Peso (kg/m²)	4,00	4,65	6,05	7,71			

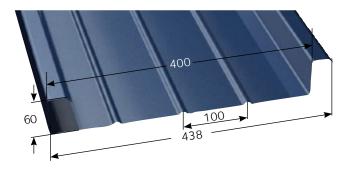
	Tabela de Sobrecargas Admissíveis (kgf/m²)													
	mero Apoios	2 apoios					3 apoios ☆vão☆vão☆				4 apoios Ávão Ávão Ávão Á			
Vã	o (m)	0,43	0,50	0,65	0,80	0,43	0,50	0,65	0,80	0,43	0,50	0,65	0,80	
	1,40	243	287	380	474	243	287	380	474	305	360	477	594	
50	1,60	185	219	290	361	185	219	290	361	233	275	364	453	
/ 120	1,80	146	172	228	284	146	172	228	284	183	216	286	357	
Flecha L	2,00	117	138	183	228	117	138	183	228	147	174	231	287	
cho	2,20	96	113	150	187	96	113	150	187	121	143	189	236	
	2,40	80	95	125	156	80	95	125	156	101	119	158	197	
ga	2,60	68	80	106	132	68	80	106	132	86	101	134	167	
g	2,80	58	68	90	113	58	68	90	113	73	86	115	143	
Sobrecarga	3,00	50	59	78	97	50	59	78	97	63	75	99	124	
So	3,20	41	48	64	80	43	51	68	85	55	65	86	108	
	3,40	33	39	52	65	38	45	59	74	48	57	76	95	

Aplicações									
Cobertura	Fachada								
Caimento: ≥ 5%	Assentamento: Vertical Horizontal								
Extensão do pano d'água: ≤ 30 m	Posição Normal: e ≥ 0,50 mm								
Telha Plana: Raio ≥ 70 m	Posição Invertida: adequada								
Telha Curva Multidobra: chapa ≥ 0,50 mm									
Perfurada: cho	apa ≥ 0,65 mm								

 $Nota: evitar sobrecarga inferior \ a \ 60 \ kgf/m^2. \ Telhas perfuradas \ a tingem \ 70\% \ da \ sobrecarga \ admssível indicada.$

Telha Trapezoidal LR 100

Computer(stings of Devict D 100 (2 / 75 05)	Espessura da Chapa (mm)						
Características do Perfil LR 100 (2.475.95)	0,50	0,65	0,80	0,95			
Momento de inércia (cm ⁴ /m)	66,1	87,7	109,3	130,8			
Módulo resistente W (cm³/m)	10,2	13,6	16,9	20,2			
Peso (kg/m²)	4,8	6,24	7,96	9,12			

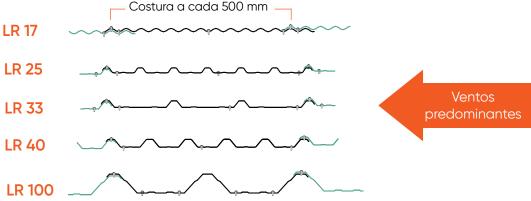

	Tabela de Sobrecargas Admissíveis (kgf/m²)												
	mero Apoios			oios ão			3 ap ∆vão∠	oios \vão∆		4	4 ap vão∆v	oios ão Avão	<u></u>
Vã	o (m)	0,50	0,65	0,80	0,95	0,50	0,65	0,80	0,95	0,50	0,65	0,80	0,95
	3,00	121	160	199	239	121	160	199	239	152	201	251	301
20	3,20	105	140	174	209	105	140	174	209	133	176	220	263
/ 120	3,40	93	123	153	184	93	123	153	184	117	155	194	232
م لـ	3,60	82	109	136	163	82	109	136	163	104	138	172	206
Flecha L	3,80	73	97	121	145	73	97	121	145	93	123	154	184
	4,00	66	87	109	130	66	87	109	130	83	111	138	165
.ga	4,20	59	78	98	117	59	78	98	117	75	100	124	149
g	4,40	53	71	88	106	53	71	88	106	68	90	113	135
Sobrecarga	4,60	48	64	80	96	48	64	80	96	62	82	102	123
So	4,80	44	59	73	88	44	59	73	88	56	75	93	112
	5,00	40	54	67	80	40	54	67	80	52	68	85	102

Aplic	ações			
Cobertura	Fachada			
Caimento: ≥ 5%	Assentamento: Vertical			
Extensão do pano d'água: ≤ 40 m	Posição Normal: e ≥ 0,65 mm			
Coberturas Curvas: não adequada	Posição Invertida: não adequada			
	Curva: sponível			
Perfurada: r	ão disponível			

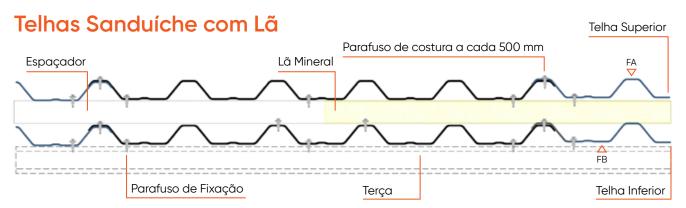
Nota: evitar sobrecarga inferior a 60 kgf/m 2 .

Bandeja Cassete 60

	Espessura da Chapa (mm)					
Características do Cassete 60 (1.400.60)	0,50	0,65	0,80	0,95		
Momento de inércia (cm ⁴ /m)	-	44,5	55,4	66,3		
Módulo resistente W (cm³/m)	-	9,6	12,0	14,4		
Peso (kg/m²)	-	5,7	7,4	9,5		


	Tabela de Sobrecargas Admissíveis (kgf/m²)														
Número de Apoios			_	ooios ão			3 ap Avão Z	oios \vão∆		4		oios ão <u>A</u> vão	0,95 - - 146 130		
Vã	o (m)	0,50	0,65	0,80	0,95	0,50	0,65	0,80	0,95	0,50	0,65	0,80	0,95		
	2,80	-	71	94	126	-	108	143	-	-	108	143	-		
180	3,00	-	62	82	109	-	95	125	-	-	95	125	-		
a L /	3,20	-	54	72	96	-	83	110	146	-	83	110	146		
echo	3,40	-	-	61	82	-	74	97	130	-	74	97	130		
ga Fl	3,60	-	-	52	69	-	66	87	116	-	66	87	116		
carç	3,80	-	-	-	58	-	59	78	104	-	59	78	104		
Sobrecarga Flecha L /	4,00	-	-	-	-	-	53	70	94	-	53	70	94		
S	4,20	-	-	-	-	-	48	64	85	-	48	64	85		

Aplico	ações						
Forro	Fachada						
Forro Reto Cobertura Vedação	Assentamento: Vertical Horizontal						
Forro Curvo sob consulta (na transversal)	Posição Normal: e ≥ 0,65 mm						
Uso como forro interno de coberturas e fachadas							
Perfurada: cho	apa ≥ 0,65 mm						


 $Nota: evitar\ sobrecarga\ inferior\ a\ 60\ kgf/m^2.\ Telhas\ perfuradas\ atingem\ 70\%\ da\ sobrecarga\ admssível\ indicada.$

Fixadores e Acessórios para Telhas

Utilizar no mínimo 3 fixadores por telha, por apoio, com exceção do perfil LR 100, onde devem ser empregados 4 fixadores.

Acessórios

Fixadores Autoperfurantes

Prefira os de acabamento aluminizado de boa qualidade e opcionalmente com cabeça de inox. Em perfis dobrados, utilize o fixador 12-14x3/4" e em perfis laminados o 12-24x 1 ½", na costura de duas chapas recomenda-se o ¼"-14x7/8".

Fechamento de Onda

Nas linhas de calhas, cumeeiras e rufos de topo, sugere-se o uso de fechamento de onda para vedar os canais da telha e impedir a entrada de chuva, insetos e aves.

Fita de Vedação

Deve ser utilizada nas sobreposições transversais e longitudinais.

Perfilor S.A. | São Paulo - SP

Revestimento em Telha LR 40 na cor Prata e LR 40 Multidobra Côncava na cor Vermelha Projeto: Ana Maria C. Flório, Daiane A. Oliveira | Foto: Perfilor

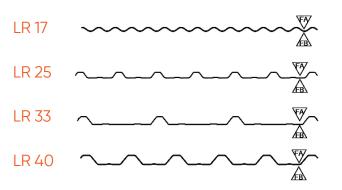
Terminal Sulacap | Rio de Janeiro - RJ

Cobertura e Fachada em Telha LR 17 Calandrada Convexa cor Cinza com pré pintura MAX 60

Telhas Curvas

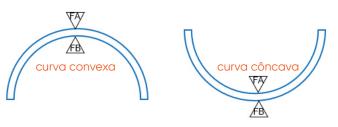
A plasticidade e versatilidade das telhas de aço tem sua maior expressão nas estruturas curvas que compõem coberturas e fachadas e podem até integrá-las.

Telhas Curvas Calandradas


Produzidas no perfil ondulado LR 17, ou trapezoidal LR 25, as telhas calandradas da Perfilor possuem aplicações muito versáteis, as peças são curvadas em todo o seu comprimento sem trechos retos ou vincos.

Telhas Curvas Multidobras

As telhas multidobras são arqueadas por estampagem transversal, que resultam em vincos regulares e equidistantes ao longo do seu comprimento. Possuem trechos retos e curvos e são fabricadas nos perfis LR 33 e LR 40.



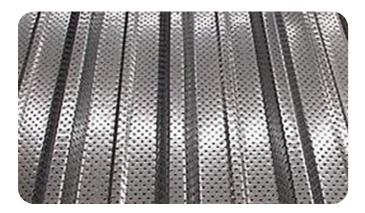
Telha	Arco	Raio (m)	Chapa (mm)	Ângulo	Compr. (m)	
LR 17	Convexo	≥ 0,6	0,80			
CAL	Convexo	≥ 1,5	0,65	180°	≤ 8,0	
LR 25 CAL	Convexo	≥ 3,0	0,65	100	= 0,0	
LR 33	Convexo	≥ 0,3	0.5		≤ 6,0	
MD	Côncavo	≥ 0,7	0,5	160°		
LR 40	Convexo	≥ 0,3	0,5	100	_ 5,0	
MD	Côncavo	≥ 0,3	0,5			



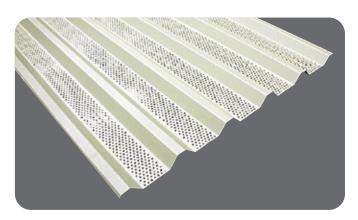
Colégio Positivo | Curitiba - PR

Fachada em Telha Ondulada LR 17 Perfurada Totalmente (13,64%), na cor Laranja Telha Ondulada LR 17 sem perfuração nas cores Amarelo, Prata e Laranja

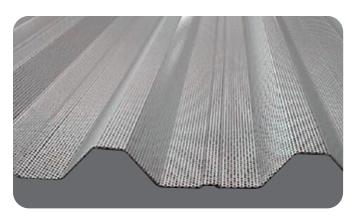
Projeto: Manoel Coelho Arquitetura | Foto: Nelson Kon



Colégio Positivo | Curitiba - PR

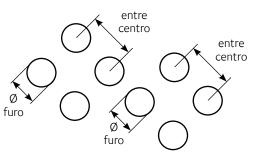

Fachada em Telha Ondulada LR 17 Perfurada Totalmente (13,64%), na cor Laranja

Telhas Perfuradas


Ousadas, as telhas perfuradas são um excelente e resistente brise metálico que garante permeabilidade às fachadas, sem comprometer o aproveitamento da ventilação e da iluminação natural. Também são usadas em sistemas sanduíche para absorção acústica.

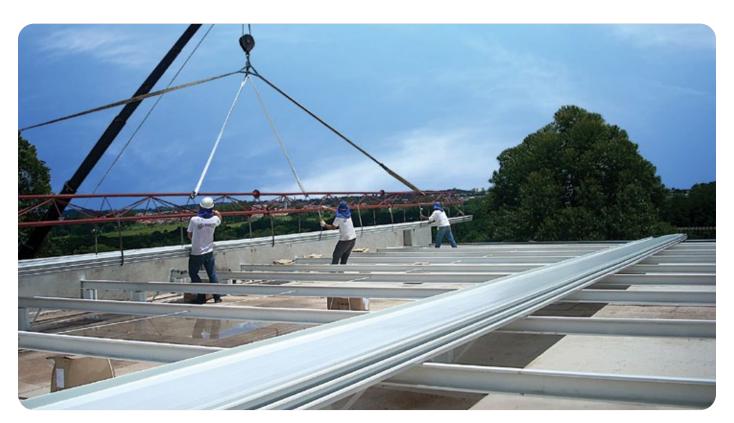
Telha LR 40 com perfuração total (13,64%), diâmetro do furo de 4,75 mm, distância entre centros de 12,2 mm, diagonal.

Telha LR 25 perfurada em faixas (13,64%), diâmetro do furo de 4,75 mm, distância entre centros de 12,2 mm, diagonal.



Telha LR 40 com perfuração total (32,4%), diâmetro do furo de 2,4 mm, distância entre centros de 4,0 mm, diagonal.

Cassete 60 com perfuração total (13,64%), diâmetro do furo de 4,75 mm, distância entre centros de 12,2 mm, diagonal.


Telha	Perfuração	Área Perfurada	Furo Ø (mm)	Distância entre Centros (mm)	Padrão	Chapa (mm)
LR 17 LR 25 LR 40	total	13,64%	4,75	12,20	Diagonal	0,65/0,80
LR 17 LR 25 LR 40 Cassete 60	em faixas	13,64%	4,75	12,20	Diagonal	0,65/0,80
LR 17 LR 25	total	32,40%	2,40	4,00	Diagonal	0,80

Digrama de perfuração diagonal

Galpão Comercial Cobertura em Telha Zipada LRZIP 53 em chapa de aço pré pintada na cor Branco Foto: Perfilor

Edifício Educacional - Içamento das telhas

Cobertura em Telha Zipada LRZIP 63 em chapa de aço pré pintada na cor Branco Foto: Perfilor

Sistema de Cobertura

16

Telha Zipada

A necessidade de cobrir grandes extensões de telhado com inclinação cada vez menor e ao mesmo tempo assegurar que o grande volume de água captado pelas telhas fosse escoado de forma segura, alavancou o desenvolvimento de telhas zipadas.

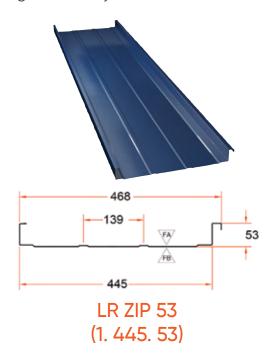
As telhas LRZIP são produzidas no local com até 70 m de comprimento e inclinação mínima de 2,5%. Podem ser utilizadas como telha superior de sistemas sanduíche ou receber isolamento térmico através de lãs minerais revestidas com laminado branco.

O equipamento que perfila a telha zipada é móvel e permite que a sua produção seja realizada no canteiro de obras, sem emendas no comprimento, ou seja, uma telha contínua que vai da cumeeira até a calha.

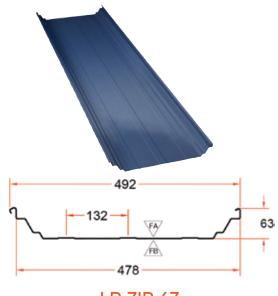
Um clip deslizante que absorve os movimentos causados pela dilatação do metal foi especialmente desenvolvido pela Perfilor.

Ele é responsável por manter a telha fixa na sua posição, sem a necessidade de parafusos.

A união lateral entre as telhas é realizada através do processo de zipagem, que consiste em uma dobra contínua entre as duas chapas e o clip, que não deixa frestas.


Todo o sistema de fixação fica oculto sob a telha, que forma uma membrana metálica virtualmente estanque e sem perfurações.

As telhas zipadas podem ser perfiladas no chão e içadas com um balancim junto a um guincho até o nível da estrutura


Outra possibilidade de fabricação é içar a perfiladeira até o nível do telhado para produzir as telhas.

A Perfilor elabora o projeto de paginação da cobertura para todos os fornecimentos deste sistema. Uma equipe própria é enviada à obra para produzir as telhas e orientar na montagem e zipagem do conjunto.

Esta solução tem melhor custo benefício em obras comerciais e industriais, de médio e grande porte. A configuração da cobertura deve, preferencialmente, ser simples e uniforme, sem interferências ou aberturas como as provocadas por domus, chaminés e sistemas de proteção contra descargas atmosféricas.

LR ZIP 63 (1.478.63)

Sol	orecarg	ja Útil (k	kgf/m²)	Aplicações				
Número de Apoios			ooios Vvão	Coberturas Extensas				
	o (m) 1,40 1,60	0,50 0,65 249 330 189 251		Caimento: ≥ 2,5%	Cobertura Curvas: não adequada			
Flecha L / 180	1,60 189 1,80 148 2,00 119 2,20 96		197 158 130	Extensão do pano d'água: ≤ 70 m	Fachada: não adequado			

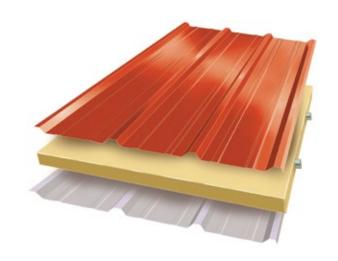
Centro de Treinamento Esportivo UFMG | Belo Horizonte - MG Cobertura Sanduíche com telha externa LR 17 Calandrada

Projeto: Arquitetos José E. Ferolla, Eduardo Mascarenhas, Juliano Nemer, André Guazelli, Denise Morado e Junia Ferrari. | Foto: Eduardo M. e Juliano Nemer

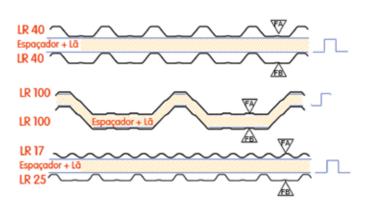
Centro Educacional Ivo Tramontina | Carlos Barbosa - RS

Sistema Sanduíche com Cassete 60 Perfurado

Projeto: Arqtos Fabiano Neuhaus, Angela Burgel, Flávio Simões e equipe | Foto: Adriana Morato


Soluções Termoacústicas

Sistema Sanduíche com Lã Mineral


O sistema sanduíche é montado na obra e formado por sucessivas etapas:

- Primeiramente são instaladas as telhas inferiores (normalmente perfis trapezoidais ou cassete);
- A seguir são fixados os espaçadores metálicos sobre o perfil inferior;
- Em seguida estende-se a la mineral;
- Por fim são montadas as telhas superiores (ondulada, trapezoidal ou até mesmo zipada).

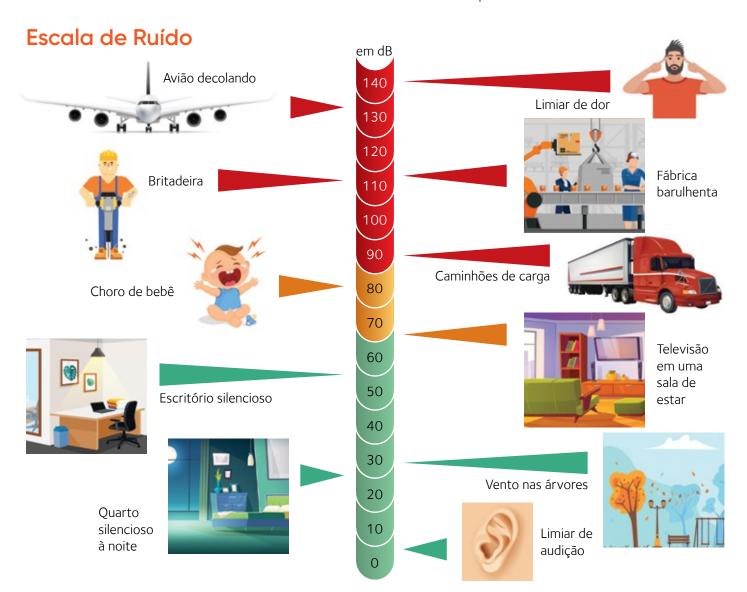
Comparativo de Desempenho	Lã de Vidro	Lã de Rocha
Espessura Usual (mm)	63,5	50
Densidade (Kg/m²)	12	32
Condutibilidade Térmica (W/m/°C)	0,045	0,040
Condutância Global (W/m/°C)	0,78	0,70

A Perfilor possui diversas possibilidades de telha sanduíche com lãs minerais, pois todos os seus perfis podem ser combinados para atingir a melhor solução para coberturas ou fachadas.

Para informações de vãos e sobrecargas admissíveis, consulte a tabela do perfil.

Em fachadas ou aplicações verticais é indicado o uso de lãs autoportantes em placas.

Utilizar lã mineral com véu quando a aplicação for realizada sobre telhas inferiores perfuradas.


Soluções de Alta Performance Termoacústica

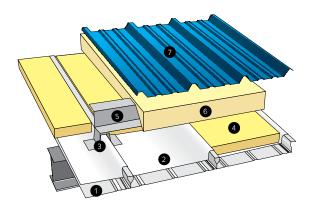
Testados em laboratório e com desempenho comprovado, as Soluções de Alta Performance Termoacústica da série Global Roof® para coberturas e Global Wall® para fachadas apresentam elevados índices de redução sonora e de absorção acústica, além de propiciar excepcional capacidade termoisolante.

A exclusiva combinação de perfis em chapa de aço e materiais isolantes com espessuras, densidades e propriedades acústicas cuidadosamente reunidas pela ArcelorMittal francesa, compõe soluções integradas para edifícios industriais e comerciais. Os sistemas acústicos possuem três funções básicas:

- Isolar um ambiente dos ruídos externos ou evitar que um ruído provocado em um ambiente se propague;
- Absorver ruídos e reverberações geradas internamente;
- Isolar e absorver simultaneamente os ruídos internos e os externos.

Para isolar ou absorver ruídos, as soluções da Perfilor utilizam telhas e chapas de espessura diferenciada, além de mantas isolantes especiais.

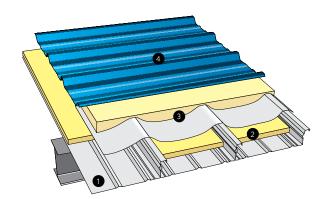
Global Roof®


Global Wall®

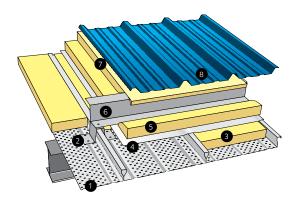
	Solução de Alta Performance Termoacústica		Índices de Re	dução S IB	Sonora				de Abs uência (α w	Peso	Transmissão
			Rw (C; Ctr)	R rose	R route	Со	nversão	de ens	saios 1/3	3 de oit	ava		(Kg/m²)	de Calor (W/m²K)
			dB	dB (A)	dB (A)	125	250	500	1000	2000	4000			
	IN 226 BR	Isolamento Acústico	50 (-2;-7)	49	44	29	40	49	52	57	62	-	33	0,41
		Absorção Acústica	-	-	-	-	-	-	-	-	-	-	33	
	IN 220 BR	Isolamento Acústico	42 (-4;-11)	39	32	16	32	41	47	46	47	-	25	0,85
SOOF ®		Absorção Acústica	-	-	-	-	-	-	-	-	-	-	25	
SLOBAL ROOF ®	CN 125 BR	Isolamento Acústico	36 (-2;-7)	35	29	16	25	33	41	43	48	-	18	0,87
		Absorção Acústica	-	_	-	0,41	0,56	0,70	0,80	0,80	0,70	0,75	10	
	CN 323J BR	Isolamento Acústico	47 (-2;-8)	46	39	26	34	47	63	72	78	-	31	0,25
	_	Absorção Acústica	-	-	-	0,82	1,00	1,00	0,90	0,87	0,78	0,90	31	·
	IN 226 BR	Isolamento Acústico	50 (-2;-7)	44	44	29	40	49	52	57	62	-	33	0,43
WALL ®	IN 220 BR	Absorção Acústica	-	-	-	-	-	-	-	-	-	-		
GLOBAL WALL ®	CN 120 BR	Isolamento Acústico	30 (-2;-7)	29	23	10	18	27	36	37	41	-	18	0,81
O	GIV 120 BIX	Absorção Acústica	-	-	-	0,41	0,56	0,70	0,80	0,80	0,70	0,75	10	0,01


Aplicações

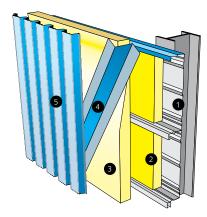
- Centros Comerciais
- Escritórios
- Edifícios Educacionais
- Danceterias
- Academias
- Ginásio de Esportes
- Salas de Espetáculos
- Templos Religiosos
- **Auditórios**
- Indústrias
- Residências
- Hospitais


Global Roof® IN 226 BR

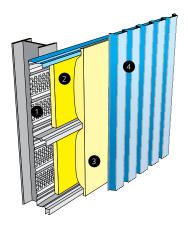
- 1 Cassete 60 5 - Espaçador 2 - Barreira de Vapor 6 - Lã Mineral
- 7 Telha Trapezoidal 3 - Espaçador
- 4 Lã Mineral


Global Roof® IN 220 BR

- 1 Cassete 60 4 - Lã Mineral
- 2 Barreira de Vapor 5 Telha Trapezoidal
- 3 Lã Mineral


Global Roof® CN 125 BR

- 1 Cassete 60 Perfurado
- 2 Lã Mineral
- 3 Lã Mineral Aluminizada
- 4 Telha Trapezoidal


Global Roof® CN 323J BR

- 1 Cassete 60 Perfurado 5 Lã Mineral
- 2 Espaçador 6 - Espaçador
- 3 Lã Mineral 7 - Lã Mineral
- 4 Barreira de Vapor 8 - Telha Trapezoidal

Global Wall® IN 226 BR

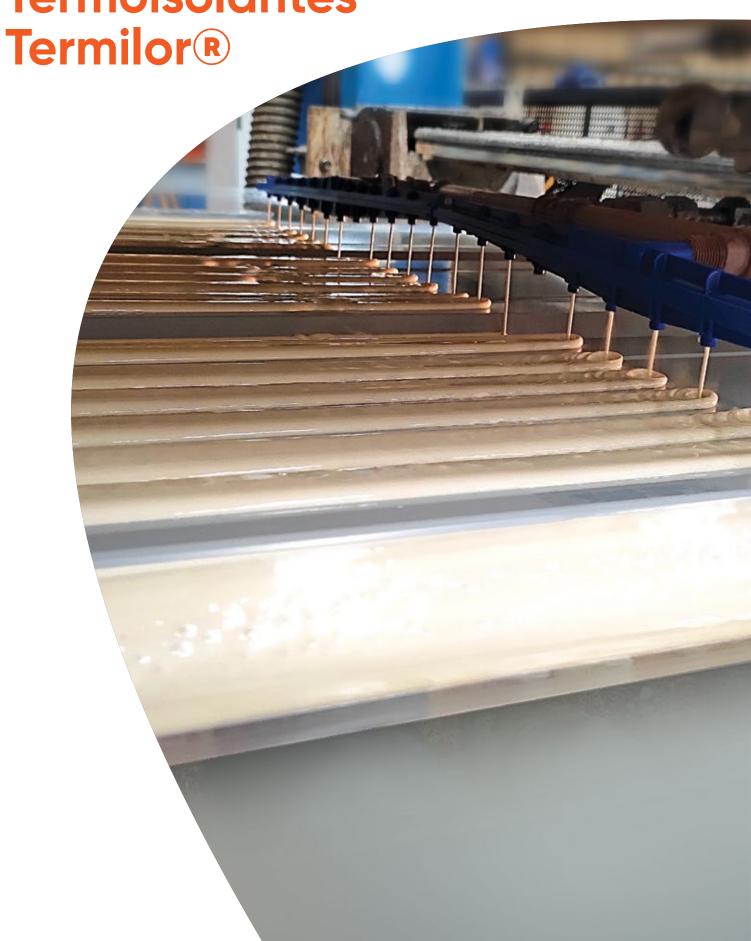
- 1 Cassete 60
- 4 Espaçador
- 2 Lã Mineral
- 5 Telha Trapezoidal
- 3 Lã Mineral

Global Wall® CN 120 BR

- 1 Cassete 60 Perfurado 3 Lã Mineral
- 2 Lã Mineral
- 4 Telha Trapezoidal

Terminal Sulacap | Rio de Janeiro - RJ

Painel Termoisolante Termilor Roof® na cor Branco com pré pintura MAX 60 Projeto: Jozé Candido Arquitetos Associados | Foto: Moskow


Shopping Plaza Carapicuíba | Carapicuíba - SP

Painel Termoisolante Termilor Wall® Micronervurado nas cores Prata, Laranja e Marrom

Projeto: Jayme Lago Mastieri Arquitetura | Foto: Perfilor

Soluções Termoisolantes

26

Painéis Termilor® com Poliisocianurato (PIR)

O poliisocianurato (PIR) é um elemento clássico amplamente adotado nas últimas décadas para isolamento térmico em larga escala na construção civil.

Possui ótima relação custo x benefício e inúmeras vantagens de utilização.

Não propicia a produção de fungos, pois não transporta nem absorve umidade. É inerte e inodoro.

Resiste a insetos ou roedores e não se degrada com o tempo.

Não é tóxico, sua produção não afeta a camada de ozônio, nem favorece o aquecimento global.

Tem excelente comportamento a exposição direta ao fogo. Não produz gotas inflamadas e fumaça.

Vantagens na Construção Civil

Tendência mundial, a construção industrializada emprega cada vez mais painéis com isolamento térmico em poliisocianurato (PIR).

São alguns dos seus benefícios:

- · Ganho de área útil quando comparado a outros tipos de vedação, pois as paredes são mais esbeltas.
- · Baixo índice de condutividade térmica, pois atinge o mesmo isolamento térmico que outros sistemas com menor espessura.
- Melhora na eficiência energética do edifício, devido ao seu excelente desempenho térmico.

- Exige menor investimento em equipamentos de climatização e reduz o consumo de energia elétrica.
- Reduz a mão de obra. Os painéis são muito leves, facilitando o manuseio e a montagem.
- Redução do cronograma da obra quando comparado à obras convencionais.
- Reduz o número de terças devido a sua elevada resistência mecânica e contribui para a leveza do conjunto edificado.
- O canteiro de obras fica mais limpo, organizado e com menos desperdícios.

Normas Técnicas Correlacionadas

- NBR 15366 Painéis industrializados com Espumas Rígidas de Poliuretano e Poliisocianurato (2006).
- Instrução Técnica n°10 (Corpo de Bombeiros do Estado de SP) Controle de Materiais de Acabamentos e Revestimentos.
- NBR 15575 Norma de Desempenho Item 8. Segurança contra incêndio (15575-3 & 15575-5).
- Regulamentação Técnica INMETRO Produtos para tratamento acústico ou isolamento térmico para uso na construção civil.

Características e Especificações

Comprimentos:	Fabricados sob medida. Máximo até 12,00 m (acima disso sob consulta). Mínimo de 3,00 m.					
Pré-corte*:	Para pingadeiras a 50 mm da borda. Para abas de sobreposição transverso * Disponível apenas na linha Termilor F					
Espessuras da chapa de aço:	Face A: 0,43, 0,50 e 0,65 mm (face exp Face B: 0,38, 0,43, 0,50 e 0,65 mm (fac	·				
Tipos de chapa de aço sem pintura:	Galvalume AZ150.					
Tipos de chapa de aço pré-pintada: (cores e quantidades sob consulta)	Galvanizado Z225 ou Galvalume AZ150. As chapas são pré-pintadas em linha contínua de pintura, com pré- tratamento, passivação, aplicação de primer epóxi anticorrosivo e acabamento final em: Poliéster (COLOR 25, PLUS 35); PVDF (ULTRA 27); Poliuretano alifático (MAX 60).					
Coeficiente Global (U) de Transmissão de Calor do Poliisocianurato (PIR), em função de sua espessura:	20 mm PIR - 0,77 (W/m ² K) 30 mm PIR - 0,65 (W/m ² K) 40 mm PIR - 0,52 (W/m ² K) 50 mm PIR - 0,40 (W/m ² K) 70 mm PIR - 0,29 (W/m ² K).	100 mm PIR - 0,21 (W/m ² K) 120 mm PIR - 0,18 (W/m ² K) 150 mm PIR - 0,14 (W/m ² K) 200 mm PIR - 0,11 (W/m ² K)				
Condutividade Térmica:	0,022 W/m.k					
Ensaios:	Classificação II-A na IT10/2019 do Cor	rpo de Bombeiros. Decreto N° 56.819.				
Filme de polietileno:	O filme de polietileno aplicado em um protege a chapa contra arranhões du instalação. Materiais com filme de pol local coberto, não devem ficar expost removido em até 7 dias do recebimen	irante o transporte, manuseio e ietileno devem ser armazenados em cos ao Sol ou calor. O filme deve ser				
Armazenamento no canteiro:	A embalagem com filme stretch permite a estocagem dos painéis no canteiro de obras por até 30 dias, desde que o material tenha sido adquirido sem filme de polietileno (descrito acima) e que sejam atendidas as condições de armazenamento descritas na embalagem e disponível no site da Perfilor.					
Sistema de empilhamento e embalagem:	Composto por suportes de isopor por envolvendo todo o fardo de painéis.	baixo da pilha e filme stretch				

Telha Térmica Termilor Roof® - TR

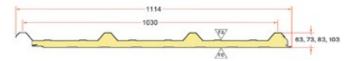
Largura útil 1030 mm

FA - Face Superior - exposta a intempéries

A preocupação com o conforto térmico e acústico em edificações é indispensável na arquitetura moderna e, sem dúvida, os painéis termoisolantes da Perfilor proporcionam soluções diferenciadas para as mais diversas aplicações.

A linha de painéis termoisolantes da série Termilor Roof® - TR são compatíveis com as telhas simples LR 33 e podem ser aplicados tanto em coberturas, quanto em fechamentos laterais.

A combinação de duas chapas metálicas perfiladas fortemente aderidas a uma camada de pelo menos 30 mm de PIR forma um painel único, extremamente rígido e resistente, fácil de transportar, manusear e principalmente de montar.


FB - Face Interna

Internamente, a chapa de aço é nervurada para proporcionar rigidez e planicidade a superfície que funciona esteticamente como um forro.

Os painéis da série TR oferecem opções para obras que necessitam de revestimentos em aço com ou sem pintura e acabamentos prépintados especiais.

Disponível em uma grande diversidade de cores (quantidade mínima sob consulta), também é possível escolher a espessura das chapas e do isolamento térmico.

São produzidos com 30, 40, 50 ou 70 mm de poliisocianurato (PIR).

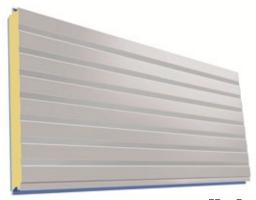
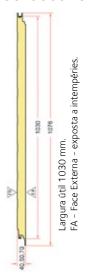
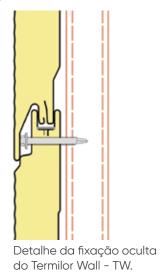


	Tabela de Sobrecargas Admissíveis (kgf/m²)											
3	3 apoios				Teri	milor Ro	of ®					
Avão Avão A		TR 63	5 – 30 mr	n PIR	TR 73	- 40 mr	n PIR	TR 8	3 - 50 m	m PIR		
V	ão (m)	0,43+0,43	0,50+0,50	0,65+0,65	0,43+0,43	0,50+0,50	0,65+0,65	0,43+0,43	0,50+0,50	0,65+0,65		
0	2,50	189	220	230	208	242	259	250	290	1315		
/ 180	2,75	167	195	205	185	216	230	223	260	280		
l L	3,00	136	165	180	153	185	197	186	225	235		
Flecha L	3,25	118	140	150	132	157	164	160	190	195		
H _e	3,50	104	120	125	117	135	138	143	165	165		
Irgo	3,75	90	105	110	102	119	121	125	145	145		
eco	4,00	77	90	95	87	102	107	107	125	130		
Sobrecarga	4,25	59	75	80	59	88	95	80	110	120		
S	4,50	44	65	70	47	76	83	59	95	105		
Pes	o (Kg/m²)	8,69	9,08	9,50	9,88	10,27	10,70	12,43	12,82	13,24		

Aplico	ações
Cobertura	Fachada
Caimento: ≥ 5%	Assentamento: Vertical Horizontal
Extensão do pano d'água: ≤ 30 m	Posição Normal: e ≥ 0,43 mm
Telha Plana: Raio ≥ 60 m	Posição Normal: não adequada
Telha Curva: r	não disponível
(*) Acima de 30	m sob consulta

Painel de Fachada Termilor Wall® - TW


FB - Face Interna


Os novos painéis termoisolantes para fachadas da série Termilor Wall® – TW são fabricados com a chapa externa micronervurada, a interna nervurada e 40, 50 ou 70 mm de poliisocianurato (PIR).

Como vedação para fachadas, os painéis TW possuem fixação oculta e podem ser montados na vertical ou na horizontal.

Para projetos diferenciados onde a cor, a espessura da chapa ou do isolante e a opção entre superfície micronervurada ou nervurada, a Perfilor oferece um amplo leque de opções e combinações que certamente irão satisfazer a qualquer necessidade dos seus clientes.

Vendedores e representantes comerciais treinados estão à disposição para ajudar na melhor escolha. A face interna do Termilor Wall® – TW é fabricada com a mesma nervura utilizada na face interna do Termilor Roof® – TR, proporcionando acabamento uniforme aos ambientes com soluções de coberturas e fachadas Perfilor.

	Tabela de Sobrecargas Admissíveis (kgf/m²)													
3	apoios	Termilor Wall ®												
中	ão 🗘 vão 🛆	TW	40 - 40 mm	PIR	TW	7 50 - 50 mm	PIR							
Vão (m)		0,43+0,43	0,50+0,50	0,65+0,65	0,43+0,43	0,50+0,50	0,65+0,65							
180	2,00	105	125	134	147	175	188							
./ ٦	2,20	94	113	122	127	153	165							
cha	2,40	83	101	111	109	132	145							
Fle	2,60	61	83	101	78	107	130							
argo	2,80	63	80	91	80	102	116							
Sobrecarga Flecha L / 180	3,00	59	74	83	59	93	105							
Sob	3,20	54	67	76	55	84	95							
Pes	o (Kg/m²)	8,56	10,08	12,62	8,99	10,50	13,05							

Aplicações									
Divisória	Fachada								
Assenta Vertical H									
Posição e ≥ 0,4	Normal: 43 mm								
	nvertida: <mark>equada</mark>								
Painel Curvo: r	não disponível								

Nota: evitar sobrecarga inferior a 60 kgf/m².

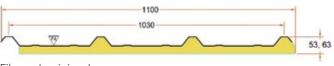
Telha Térmica Termilor Filme® - TF

Largura útil 1030 mm FA - Face Superior - exposta a intempéries

A linha Termilor® apresenta sua versão mais econômica, recomendada para coberturas de galpões com pé direito elevado ou sobre lajes e forros.

O Termilor Filme® - TF, possui um filme aluminizado texturizado branco ou preto, que proporciona uma opção de melhor custo-benefício para telhados que dispensam a chapa metálica inferior e possui melhor aparência do que as mantas de lã mineral revestidas com filme sintético utilizadas em subcoberturas.

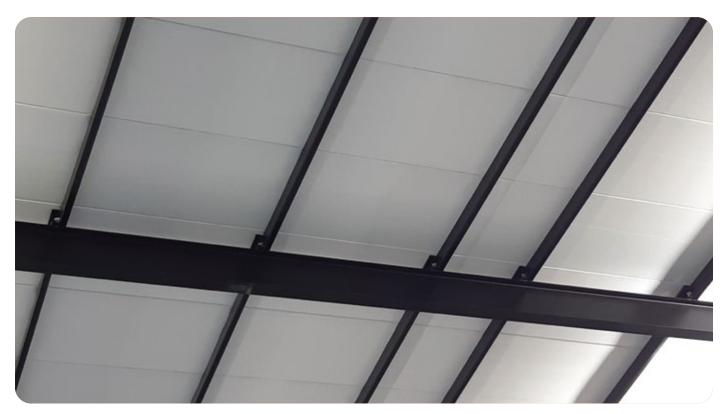
Por ser fabricado com apenas uma chapa de aço - a do perfil trapezoidal LR 33 - sua resistência mecânica é próxima a de uma telha simples, tornando-o mais flexível e, sendo assim, deve ser



FB - Face Interna (filme de alumínio branco)

descarregado e manuseado com cuidado. Não deve ser arrastado sobre os demais ou sobre a estrutura para não danificar o filme inferior, nem sofrer pressão demasiada durante a montagem para não comprimir o poliisocianurato (PIR), o que afrouxa as fixações e provoca vazamentos.

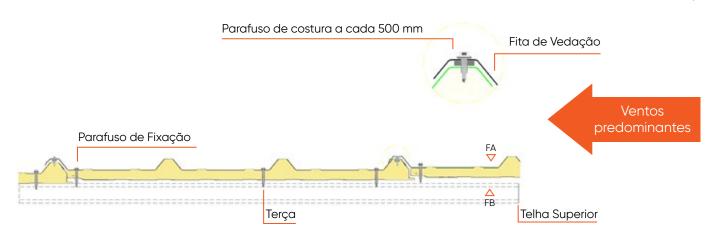
O corte para pingadeiras e sobreposições transversais pode ser realizado facilmente no canteiro de obras pela equipe de montagem.


São produzidos com 20 mm (TF 53), ou 30 mm (TF 63), de poliisocianurato (PIR).

Filme aluminizado

	Tabela de Sobrecargas Admissíveis (kgf / m²) TF 53 e TF 63													
Número de Apoios			2 apoios		4	3 apoios √vão ∕vão ∕			4 apoios ∱vão ∱vão ∱vão ∱					
Vã	o (m)	0,43	0,50	0,65	0,50	0,43	0,65	0,43	0,50	0,65				
50	1,40	99	117	155	99	117	155	124	147	195				
/ 120	1,50	85	101	134	85	101	134	108	127	169				
a L	1,60	75	88	117	75	88	117	94	111	148				
Flecha L	1,70	66	78	103	66	78	103	83	98	130				
	1,80	58	69	91	58	69	91	74	87	116				
rga	1,90	52	61	81	52	61	81	66	78	103				
ca	2,00	46	55	73	46	55	73	59	70	92				
Sobrecarga	2,10	42	49	66	42	49	66	53	63	83				
So	2,20	38	45	59	38	45	59	48	57	75				
Peso	(Kg/m²)	4,35	4,54	4,75	4,35	4,54	4,75	4,35	4,54	4,75				

Aplico	ações
Cobertura	Fachada
Caimento: ≥ 5%	Sob Consulta
Extensão do pano d'água: ≤ 25 m	Posição Normal: e ≥ 0,50 mm
Coberturas Curvas: não adequada	Posição Invertida: não adequada
Telha Curva:	não disponível



Galpão Industrial (vista inferior) | Taubaté - SP Termilor Filme® - TR 63-TF, com filme de alumínio na cor Branco

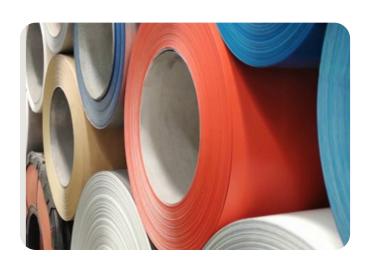
Foto: Perfilor

Fixadores para Termilor®

Finalidade	Aplicação	Especificação		
Costura	Termilor Roof® TR e TF Arremates de cobertura e fachada	PR 1/4-14x7/8"— Ponta 1		
Fixação no canal, em	Painel Termilor Wall® TW 40	PR 12-14x1 3/4" – Ponta 3		
estrutura de aço dobrada com espessura até 4 mm	Telha Painel Termilor Roof® TR 63 Painel Termilor Wall® TW50 Termilor Filme®	PR 12-14x2 3/8" – Ponta 3		
	Telha Painel Termilor Roof® TR 73 Telha Painel Termilor Roof® TR 83	PR 12-14x2 3/4" – Ponta 3		

Painéis Termoisolantes de Alto Desempenho

Apresentamos a linha Termilor Cold® - TC, painéis termoisolantes de alto desempenho para ambientes controlados.


A mais nova solução da ArcelorMittal Perfilor para vedação de câmaras frigoríficas e aplicações em indústria, agronegócio, salas limpas, compartimentação de galpões, entre outras.

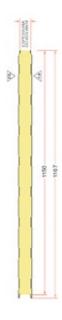
A série de Painéis Termilor Cold® – TC é voltada para atender as necessidades de conforto térmico, condições de processo e conservação e preservação de temperatura em ambientes específicos.

Supermercados, frigoríficos, laboratórios, centros de distribuição e até mesmo habitações podem fazer uso deste produto, principalmente em construções modulares.

Revestimentos seguros

Os painéis são produzidos em chapa de aço Galvalume®, uma liga composta por alumínio-zinco especialmente desenvolvida para a construção civil e muito resistente, que associada aos revestimentos pré-pintados, tornam os compartimentos extremamente duráveis e seguros para a indústria de alimentos.

Liberdade de cor


Temos o maior leque de cores do mercado e uma diversidade de revestimentos que, combinados, atendem as mais exigentes necessidades de projeto.

Compromisso com a qualidade

Do aço da ArcelorMittal a pré-pintura das chapas na Tekno Kroma, toda a cadeia de produção dos painéis é completamente rastreada e possui certificado de garantia de origem do aço e da pintura.

Painel Frigo Termilor Cold® - TC

Soluções dedicadas

Toda a qualidade e tradição que ArcelorMittal Perfilor oferece para a construção civil através de sistemas especiais de cobertura, fachadas e lajes, agora também está presente em instalações e ambientes que exigem alto desempenho termoisolante, através dos painéis compostos por poliisocianurato (PIR).

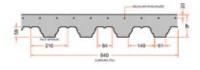
	In	formações Té	ecnicas		Aplicações
Espessura Isolante – PIR (mm)	Espessura da Chapas (mm)	Largura Útil (mm)	Coeficiente Global de Transmissão de Calor (W/m².K)	Vão Máximo Entre Apoios (mm)	Divisória Fachada Forro
30	0,43+0,43	1150	0,65	2600	Assentamento:
40	0,43+0,43	1150	0,52	2800	Vertical Horizontal
50	0,43+0,43	1150	0,40	3200	Horizontal
70	0,43+0,43	1150	0,29	4400	Acabamento:
100	0,43+0,43	1150	0,21	5300	liso / nervurado
120	0,43+0,43	1150	0,18	5750	
150	0,43+0,43	1150	0,14	6300	Painel Curvo:
200	0,43+0,43	1150	0,11	7000	não disponível

Fator de conversão: 1W/m².K = 0,86kcal/h.m².oC.

Vão máximo para painel bi-apoiado, com flecha máxima admissível L/120 e carga distribuída de 75 kg/m². Comprimento máximo: 15 m. Disponível também em 0,50 e 0,65 mm, (0,38 mm sob consulta).

Ponte Euclydes da Cunha | São José do Rio Pardo - SP Retrofit com Forma Colaborante Polydeck® 59S - Steel Deck Projeto: Projetta (retrofit) | Foto: Perfilor

Studio de Arquitetura Maurício Melara | Curitiba - PR Forma Colaborante Polydeck® 59S - Steel Deck Projeto: Maurício Melara Arquitetura | Foto: Celso Pilati


Sistema de Laje Mista Steel Deck

Polydeck 59S®

O Steel Deck da ArcelorMittal

Como escolher sua telha forma colaborante Polydeck 59S®

1. Pela utilização das tabelas

Conhecendo um dos parâmetros determinantes do projeto (sobrecarga, vãos, número de apoios ou espessura da laje), verifique nas tabelas abaixo a especificação que atende a estas exigências.

Exemplo: Para uma sobrecarga de 540 daN/m² podemos ter as seguintes condições:

- vão de 3,00 m, 4 apoios, chapa de 0,80 mm, espessura total 11 cm, sem escoramento;
- vão de 3,40 m, 3 apoios, chapa de 0,95 mm, espessura total 12 cm, com escoramento;
- vão de 3,60 m, 4 apoios, chapa de 1,25 mm, espessura total 11 cm, sem escoramento.

2. Pelas restrições de cálculo

Eventuais restrições de cálculo como:

- espessura mínima da laje imposta pelo uso de conectores;
- espessura mínima imposta pelo calculista devido a outras variáveis.

Nestes casos a utilização das tabelas é de forma inversa, encontrando a situação mais econômica para a espessura total predefinida.

O calculista da obra deverá verificar as condições de aplicação conforme a ABNT NBR 14,323 anexo C, além das particularidades que podem ocorrer em cada estrutura, como esforços horizontais, utilização de vigas mistas, vibrações, ressonância, cargas concretadas, resistência ao fogo e outras.

Nos pontos de momento negativo, o calculista deverá prever armaduras negativas adicionais, pois a malha anti-fissuração indicada não tem esta função.

Tabelas de Sobrecargas A

Espessura 0,80 mm

SISTEMA 2 APOIOS - Vão máximo sem escora: 2.40 Vão (m) 2,00 2,20 2,60 2,80 3,00 3,20 3,40 3,60 3,80 4,00 2,40

	SISTEMA 3 APOIOS - Vão máximo sem escora: 3,00 m															
Vão	o (m)	2,00	2,20	2,40	2,60	2,80	3,00	3,20	3,40	3,60	3,80	4,00	4,20	4,40	4,60	4,80
		1259	1044	879	752	650	568	500	445							
	12	1385	1148	968	827	715	625	551	288							
		1512	1245	1057	903	781	683	379	311	254						
(cm)		1639	1359	1146	979	847	740	407	334	272						
) e		1767	1465	1235	1055	913	532	436	357	291						
laje		1894	1571	1324	1132	979	568	465	380	309						
g	17	2022	1677	1414	1208	737	604	494	404	328	264					
	18	2150	1783	1503	1285	781	640	524	427	347	278					
Espessura	19	2278	1889	1593	1012	826	676	553	451	366	293					
Š	20	2407	1996	1683	1067	871	712	582	475	384	308					
Est		2535	2103	1773	1122	915	749	612	498	403	323	254				
	22	2664	2210	1451	1177	960	785	641	522	422	338	266				
	23	2793	2317	1520	1233	1005	821	671	546	441	353	277				
	24	2923	2424	1588	1289	1050	858	701	570	460	368	289				
	25	3052	1852	1657	1344	1096	895	730	594	480	383	301				

	SISTEMA 4 APOIOS - Vão máximo sem escora: 3,00 m															
Vã	o (m)	2,00	2,20	2,40	2,60	2,80	3,00	3,20	3,40	3,60	3,80	4,00	4,20	4,40	4,60	4,80
	11	1205	999	842	719	622	544	479								
	12	1326	1099	927	792	685	598	315	256							
	13	1447	1200	1012	865	748	654	341	276							
(cm)	14	1569	1301	1097	937	811	450	366	296							
	15	1691	1402	1182	1010	874	482	391	316	253						
laje	16	1813	1503	1268	1084	633	514	417	336	296						
g	17	1936	1605	1353	1157	673	547	443	357	285						
	18	2058	1707	1439	1230	714	579	469	377	301						
Espessura	19	2181	1809	1525	931	754	612	495	398	317						
) es	20	2304	1911	1611	982	795	644	521	418	333	260					
ESK		2427	2013	1698	1032	836	677	547	439	349	273					
	22	2551	2115	1343	1083	876	710	573	460	365	285					
	23	2674	2218	1407	1134	917	742	599	481	381	297					
	24	2798	2321	1470	1185	958	775	626	501	397	310					
	25	2922	1916	1534	1263	999	808	652	522	414	322					

Espessura 0,95 mm

					SIS	TEMA 2 A	APOIOS -	Vão n
Vã	o (m)	2,00	2,20	2,40	2,60	2,80	3,00	3,20
		1165	966	814	695	367	291	
	12	1283	1063	896	765	399	316	
	13	1400	1161	978	544	431	340	266
(cm)	14	1518	1258	1061	586	464	365	285
	15	1636	1357	1143	628	496	390	303
laje	16	1755	1455	848	670	529	415	322
qa	17	1874	1554	902	713	562	441	341
	18	1993	1652	957	755	595	466	361
Espessura	19	2112	1751	1011	798	628	492	380
ě	20	2232	1356	1066	841	662	517	399
ESF	21	2351	1426	1121	884	695	543	419
	22	2471	1497	1177	927	729	569	438
	23	2591	1568	1232	970	762	595	458
	24	2711	1639	1287	1013	796	621	477
	25	2831	1710	1343	1057	830	647	497

				SIS	ГЕМА З А	POIOS -	Vão m
o (m)	2,00	2,20	2,40	2,60	2,80	3,00	3,20
	1435	1215	1024	874	756	660	581
12	1614	1337	1127	962	832	727	640
13	1762	1460	1230	1051	908	793	699
	1910	1583	1334	1140	985	860	758
	2059	1706	1438	1228	1062	928	818
	2208	1830	1542	1317	1139	995	587
	2357	1954	1646	1407	1216	1063	624
	2507	2078	1751	1496	1294	797	662
19	2657	2202	1856	1586	1371	843	699
20	2807	2327	1961	1676	1075	889	737
	2957	2451	2066	1766	1130	935	775
22	3108	2576	2171	1856	1187	981	813
23	3259	2701	2277	1509	1243	1028	851
24	3410	2827	2382	1578	1299	1074	889
25	3561	2925	2488	1646	1355	1120	928
	11 12 13 14 15 16 17 18 19 20 21 22 23 24	11 1435 12 1614 13 1762 14 1910 15 2059 16 2208 17 2357 18 2507 19 2657 20 2807 21 2957 22 3108 23 3259 24 3410	11 1435 1215 12 1614 1337 13 1762 1460 14 1910 1583 15 2059 1706 16 2208 1830 17 2357 1954 18 2507 2078 19 2657 2202 20 2807 2327 21 2957 2451 22 3108 2576 23 3259 2701 24 3410 2827	11 1435 1215 1024 12 1614 1337 1127 13 1762 1460 1230 14 1910 1583 1334 15 2059 1706 1438 16 2208 1830 1542 17 2357 1954 1646 18 2507 2078 1751 19 2657 2202 1856 20 2807 2327 1961 21 2957 2451 2066 22 3108 2576 2171 23 3259 2701 2277 24 3410 2827 2382	o (m) 2,00 2,20 2,40 2,60 11 1435 1215 1024 874 12 1614 1337 1127 962 13 1762 1460 1230 1051 14 1910 1583 1334 1140 15 2059 1706 1438 1228 16 2208 1830 1542 1317 17 2357 1954 1646 1407 18 2507 2078 1751 1496 19 2657 2202 1856 1586 20 2807 2327 1961 1676 21 2957 2451 2066 1766 22 3108 2576 2171 1856 23 3259 2701 2277 1509 24 3410 2827 2382 1578	o (m) 2,00 2,20 2,40 2,60 2,80 11 1435 1215 1024 874 756 12 1614 1337 1127 962 832 13 1762 1460 1230 1051 908 14 1910 1583 1334 1140 985 15 2059 1706 1438 1228 1062 16 2208 1830 1542 1317 1139 17 2357 1954 1646 1407 1216 18 2507 2078 1751 1496 1294 19 2657 2202 1856 1586 1371 20 2807 2327 1961 1676 1075 21 2957 2451 2066 1766 1130 22 3108 2576 2171 1856 1187 23 3259 2701 2277 1509 1243 24 3410 2827 2382 1578 1299	11 1435 1215 1024 874 756 660 12 1614 1337 1127 962 832 727 13 1762 1460 1230 1051 908 793 14 1910 1583 1334 1140 985 860 15 2059 1706 1438 1228 1062 985 16 2208 1830 1542 1317 1139 995 17 2357 1954 1646 1407 1216 1063 18 2507 2078 1751 1496 1294 797 19 2657 2202 1856 1586 1371 843 20 2807 2327 1961 1676 1075 889 21 2957 2451 2066 1766 1130 935 23 3259 2701 2277 1509 1243 1028

					SIS	TEMA 4 A	POIOS -	Vão m
Vã	o (m)	2,00	2,20	2,40	2,60	2,80	3,00	3,20
		1404	1163	980	837	723	632	557
	12	1545	1280	1078	921	796	696	613
<u>-</u>	13	1686	1397	1177	1006	870	760	432
(cm)	14	1828	1515	1277	1091	943	824	465
е (15	1971	1633	1376	1176	1017	888	499
laje	16	2113	1752	1476	1261	1091	646	532
qq		2256	1870	1576	1347	1165	687	566
	18	2400	1989	1676	1432	1239	729	600
=spessura	19	2543	2108	1776	1518	937	770	634
ě	20	2687	2227	1877	1604	989	812	668
ESF		2831	2347	1978	1690	1040	854	702
	22	2975	2466	2079	1776	1091	896	736
	23	3119	2586	2180	1396	1143	938	770
	24	3264	2706	2281	1459	1194	980	805
	25	3409	2826	2382	1523	1246	1022	839

Viga Mista

Uma das possíveis utilizações da laje mista é uma associação estrutural com as vigas-suporte permitindo que a laje desempenhe um papel de mesa de compressão. Nesta aplicação, a solidarização mecânica viga-laje é realizada por intermédio de conectores soldados, como mostra a figura abaixo.

POLYDECK Chapas com encontro "a topo" (sem sobreposição) Para a fabricação do Polydeck 59S®, a Perfilor utiliza aço galvanizado Z 275 estrutural, ZAR 280, certificado pela ArcelorMittal, atendendo a norma ABNT NBR 1621.

A Perfilor poderá oferecer o projeto de paginação e montagem específico para a sua obra.

Malha Anti-Fissuração

Espessura da Laje	Bitola
de 11 a 15 cm	∅3,8x∅3,8 - 150 x 150 (Q75)
16 cm	⊗4,2x⊗4,2 - 150x150 (Q 92)
de 17 a 18 cm	Ø3,8xØ3,8 − 100 x 100 (Q113)
de 19 a 20 cm	Ø 4,2xØ 4,2 - 100 x 100 (Q138)

Características Mecânicas do Perfil

Espessura da chapa (mm)	Momento de Inércia I (cm ⁴ /m)	Módulo Resistente W (cm³/m)	Peso (Kg/m²)
0,80	55,15	i/vi 17,02 i/vs 20,73	9,14
0,95	74,56	i/vi 23,02 i/vs 28,03	10,86
1,25	90,10	i/vi 27,81 i/vs 33,87	14,29

Peso Próprio do Perfil + Concreto Kg/m 2 (Fck 22 Mpa)

Espessura da I	Espessura da laje (cm)				13	14	15	16	17	18	19	20	21	22	23	24	25
Consumo de Conc	reto (m³/m²)	0,077	0,087	0,097	0,107	0,117	0,127	0,137	0,147	0,157	0,167	0,177	0,187	0,197	0,207	0,217
Peso próprio da laje	2 B	0,80 mm	194	218	242	266	290	314	338	362	386	410	434	458	482	506	530
(Kg/m²)	cha	0,95 mm	197	221	245	269	293	317	341	365	389	413	437	461	485	509	533
(NG/III)	2.8	1.25 mm	199	223	247	271	295	319	343	367	391	415	439	463	487	511	535

Admissíveis Úteis (daN/m²)

Espessura 1,25 mm

ná	źximo sem escora: 2,40 m													
	3,40	3,60	3,80	4,00	4,20	4,40	4,60	4,80						
	259													
	273													
	287													
	302													
	316													
	330													
	344													
	359	260												
	373	270												

	259							
	273							
	287							
	302							
	316							
	330							
	344							
	359	260						
	373	270						
ά	ximo ser	n escora	: 3,00 m					
	3,40	3,60	3,80	4,00	4,20	4,40	4,60	4,80
Π	516	462						
	E40	305	257					

á	ximo sen	n escora	: 3,00 m					
	3,40	3,60	3,80	4,00	4,20	4,40	4,60	4,80
	516	462						
	569	305	253					
	621	329	273					
	426	354	293					
	457	379	313	257				
	487	404	334	273				
	518	429	354	290				
	549	455	375	306				
	580	480	395	323	261			
	611	506	416	339	274			
	642	531	437	356	287			
	674	557	458	373	300			
	705	582	478	390	313			
	736	608	499	407	327	258		
	768	634	520	424	340	268		

ná	ximo ser	n escora	: 3,20 m					
	3,40	3,60	3,80	4,00	4,20	4,40	4,60	4,80
	494	250						
	330	272						
	357	293						
	384	315						
	411	337						
	438	359						
	465	381						
	493	403						
	520	452						
	548	447						
	576	470						
	603	492						
	631	515	259					
	659	537	270					
	687	560	281					

					SIS	ГЕМА 2 А	POIOS -	Vão má	ximo ser	n escora	ı: 2,80 m					
Vã	o (m)	2,00	2,20	2,40	2,60	2,80	3,00	3,20	3,40	3,60	3,80	4,00	4,20	4,40	4,60	4,80
		1623	1344	1132	966	835	729	401	329	268						
	12	1787	1480	1246	1064	919	532	437	358	291						
~	13	1952	1616	1361	1162	1004	578	473	387	314	253					
(cm)		2117	1753	1476	1260	1089	623	510	416	337	271					
о О	15	2282	1890	1592	1359	818	669	547	446	361	289					
laje		2448	2028	1707	1458	874	715	584	475	385	308					
da		2614	2166	1824	1557	931	761	621	505	408	326	256				
ō	18	2781	2304	1940	1213	988	807	659	535	432	345	270				
Espessura	19	2948	2242	2057	1284	1046	854	696	566	456	364	285				
Š	20	3116	2581	2174	1355	1103	900	734	596	480	383	299				
ESF	21	3284	2720	2291	1426	1161	947	772	626	505	402	314				
	22	3452	2860	1848	1498	1219	994	810	657	529	421	328				
	23	3621	2999	1937	1569	1277	1041	848	688	553	440	343	260			
	24	3789	3139	2026	1641	1335	1088	886	718	578	459	358	270			
	25	3958	3279	2115	1713	1393	1136	924	749	603	478	372	281			

					SIS.	ТЕМА З А	APOIOS -	Vão mó	ximo ser	n escora	: 3,60 m					
Vã	o (m)	2,00	2,20	2,40	2,60	2,80	3,00	3,20	3,40	3,60	3,80	4,00	4,20	4,40	4,60	4,80
		1431	1285	1162	1058	968	890	807	714	613	526					
	12	1617	1452	1313	1196	1095	1006	889	789	705	634	364				
	13	1803	1619	1464	1334	1221	1103	971	862	770	692	395	286	286		
(cm)		1989	1786	1616	1471	1347	1196	1053	935	835	499	426	308	308	260	
		2175	1953	1767	1609	1473	1290	1136	1008	901	536	457	330	330	278	
laje	16	2361	2120	1918	1747	1585	1384	1218	1081	671	572	488	352	352	297	
g		2547	2287	2070	1885	1693	1478	1302	1155	715	609	519	374	374	315	263
	18	2733	2454	2221	2023	1801	1572	1385	1229	759	647	551	396	396	333	278
Espessura	19	2919	2621	2372	2161	1910	1667	1468	943	803	684	582	418	418	352	293
Šě	20	3105	2788	2523	2299	2018	1762	1552	996	847	721	614	441	441	370	309
ESF		3291	2955	2675	2436	2127	1857	1635	1048	891	759	646	463	463	389	324
	22	3477	3122	2826	2574	2236	1952	1296	1100	936	797	678	486	486	408	340
	23	3663	3289	2977	2712	2346	2048	1385	1153	980	834	710	508	508	427	355
	24	3849	3456	3128	2841	2455	2143	1421	1206	1025	872	742	531	531	446	371
	25	4035	3623	3280	2968	2565	2239	1483	1258	1070	910	774	554	554	465	386

					SIS	TEMA 4 A	APOIOS -	- Vão má	iximo ser	n escoro	ı: 3,60 m					
Vã	o (m)	2,00	2,20	2,40	2,60	2,80	3,00	3,20	3,40	3,60	3,80	4,00	4,20	4,40	4,60	4,80
		1449	1301	1178	1073	982	878	773	686	613	540					
	12	1638	1470	1331	1212	1107	966	851	755	675	387	328	277			
~	13	1826	1640	1484	1352	1209	1055	929	825	494	419	355	300	252		
(cm)	14	2014	1809	1637	1492	1312	1145	1008	895	533	452	382	322	270		
	15	2202	1978	1791	1632	1414	1234	1087	676	572	485	410	345	289		
laje	16	2390	2147	1944	1756	1517	1324	1166	723	612	518	437	368	308	256	
qq		2579	2316	2097	1876	1621	1415	1246	770	652	551	465	391	327	271	
	18	2767	2485	2250	1996	1724	1505	968	817	691	585	493	415	346	287	
Espessura	19	2955	2655	2404	2116	1828	1596	1024	865	731	618	521	438	365	302	
) es	20	3143	2824	2557	2236	1932	1686	1081	912	771	652	549	461	385	318	259
Esp		3332	2993	2710	2356	2036	1351	1138	960	811	685	578	485	404	334	272
	22	3520	3162	2863	2477	2141	1419	1195	1008	852	719	606	508	424	350	285
	23	3708	3331	3016	2598	2245	1487	1252	1056	892	753	634	532	443	366	298
	24	3896	3500	3170	2719	2350	1556	1309	1104	933	787	663	556	463	382	311
	25	4085	3670	3323	2841	2455	1624	1366	1153	973	821	692	580	483	398	323

Museu Mazzaropi | Taubaté - SP

Telha Trapezoidal LR 25 Calandrada em chapa de aço Galvalume® AZ 150 sem pintura Projeto: N&W Arquitetos | Foto: Arquivo Museu

Bar Stella Artois / Casa Cor 2010 | Belo Horizonte - MG

Telha Ondulada LR 17 em aço inoxidável acabamento polido

Projeto: BCMF Arquitetos | Foto: Jomar Bragança

Revestimentos Metálicos

Galvanizado

Revestimento metálico composto 100% por zinco (275 g/m² na soma das duas faces) produzido sem adição de chumbo, em consonância com a política da ArcelorMittal de desenvolvimento sustentável, com espessura controlada e cristais minimizados.

Atende a NBR 7008 e possui certificado de qualidade e origem ArcelorMittal.

Obtido pelo processo de galvanização por imersão a quente (passagem da chapa de aço por um banho de zinco líquido), esse revestimento confere ao aço alta qualidade superficial, proteção contra a corrosão e maleabilidade.

Galvalume®

Há décadas, as chapas de aço Galvalume® demonstram excelente durabilidade, resultado da combinação entre o alumínio e o zinco, aplicados por meio de um processo de imersão de tiras a quente em uma linha de galvanização contínua.

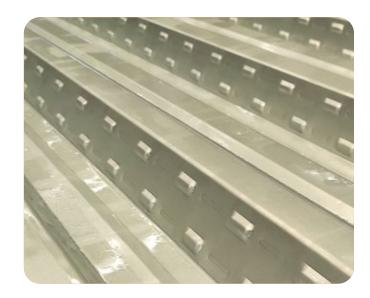
Sua composição apresenta 55% de alumínio, 44,4% de zinco e 1,6% de silício, garantindo maior resistência à corrosão e abrasão, refletividade ao calor, maior vida útil e ótimo aspecto visual.

O Galvalume® é fornecido com revestimento mínimo de 150 g por m² na soma das duas faces (AZ 150) e pode ser pré-pintado.

Inoxidável

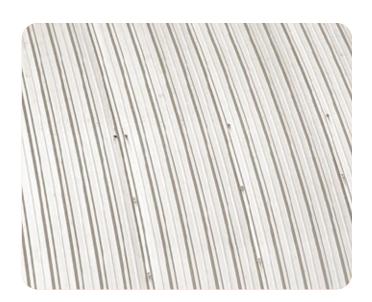
Composto por ligas de ferro (Fe), carbono (C) e com um mínimo de 10,50% de cromo (Cr), além de outros elementos metálicos, os aços inoxidáveis possuem incomparável resistência a corrosão.

Versátil, resistente, moderno, durável, nobre e elegante, a chapa de aço inoxidável é 100% renovável, têm qualidades exclusivas e inúmeras aplicações.


O uso do aço inox é uma tendência crescente na arquitetura mundial. Um material de qualidade, estética excepcional e baixo custo de manutenção.

As chapas de aço galvanizado são utilizadas para a produção de telhas para coberturas e fachadas instaladas em locais de pouca agressividade ambiental e menor exigência estética.

Quando produzidas em aço ZAR280, com resistência estrutural, as bobinas de aço galvanizado são utilizadas para fabricação de steel deck, a telha forma colaborante para lajes mistas Polydeck® da Perfilor, disponível nas espessuras de 0,80, 0,95 ou 1,25 mm.


Podem receber pré-pintura coil coating (neste caso com revestimento de 225 g/m² de zinco).

As telhas de aço Galvalume® da Perfilor atendem rigorosamente às especificações das normas brasileiras ABNT para aços revestidos de seção ondulada e trapezoidal (NBR 14513 e NBR 14514), que determinam os limites dimensionais e requisitos a serem considerados, tornando o produto 100% em conformidade.

Podem ser fabricadas em comprimentos de até 12 m, nas espessuras nominais de 0,43, 0,50 e 0,65 mm, e são indicadas para obras mais econômicas, industriais e comerciais, em áreas rurais e urbanas. Também são produzidas cumeeiras e rufos para acabamento das coberturas e fechamentos metálicos.

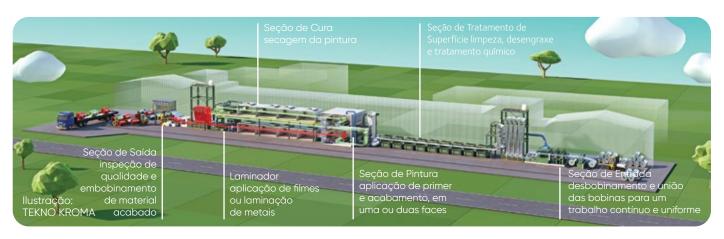
O uso de telhas trapezoidais ou onduladas em aço inoxidável é cada vez mais comum na arquitetura devido a sua alta resistência mecânica, leveza, durabilidade – inclusive em atmosferas agressivas, baixíssima manutenção, grande apelo estético, excelente resistência à corrosão (inclusive em altas temperaturas) e à abrasão, devido à sua maior dureza superficial. Essas características podem ser exploradas através de perfis previamente selecionados em conjunto com a Perfilor, como as telhas LR 17, LR 25 e LR 40. Podem compor sistemas sanduíche com lã mineral e também podem ser perfuradas ou curvas (calandrada ou multidobra).

Primato Supermercado | Toledo - PR

Painel de Fachada Termilor Wall® em chapa de aço pré pintada em cores diversas Projeto: ADM Engenharia | Foto: Cleidson R.

Combo Atacadista | Araranguá - SC

Painel de Fachada Termilor Wall® em chapa de aço pré pintada na cor Laranja

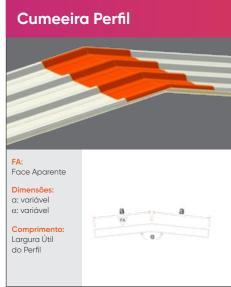

Revestimentos Pré-Pintados

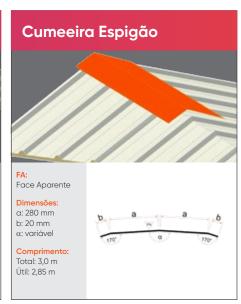
Sistema de Pré-Pintura Coil Coating

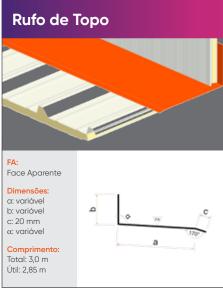
Para fabricação de telhas e painéis, a Perfilor utiliza chapa de aço zincada por imersão a quente e pré-pintada em linha contínua (Sistema de Pré-Pintura Coil Coating), onde a chapa é limpa, tratada e posteriormente protegida pela aplicação de um primer epóxi, seguido da pintura de acabamento em poliéster, poliuretano alifático ou fluoreto de polivinilideno (PVDF).

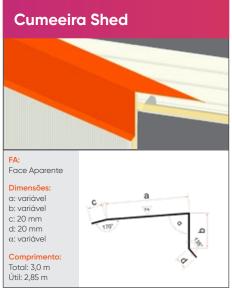
		C	aracterísticas				
Pré-pintura (face externa)	Descrição	Camadas de Revestimento Orgânico	Revestimento Metálico	Brilho	Combinações (face interna)	Dureza a Lápis (ASTM D 3363)	Aderência (grade plana) (ASTM D 3359)
Ecogris 15	Pré-pintado básico, econômico, disponível somente na cor Cinza Ral 7035, para uso interno ou ambiente de pouca agressividade (rural ou urbano).	10 µm de acabamento em poliéster +5 µm de primer epoxi anticorrosivo	Zincagem Z 225, Z 275 ou Galvalume AZ 150	30% (±5%)	Ecogris 15 Color 25	F mínimo	100%
Color 25	Pré-pintado multi-função, carro chefe do mercado, utilizado em coberturas e fachadas de ambientes rurais e urbanos, possui excelente custo-beneficio.	20 µm de acabamento em poliéster +5 µm de primer epoxi anticorrosivo	Zincagem Z 225, Z 275 ou Galvalume AZ 150	30% (±5%)	Ecogris 15 Color 25 Plus 35 Ultra 27 Max 60	F mínimo	100%
Plus 35	Sistema pré-pintado de alta qualidade, com maior camada de proteção para ambientes de média agressividade ou projetos de maior compromisso estético.	20 μm de acabamento em poliéster +15 μm de primer epoxi anticorrosivo	Zincagem Z 225, Z 275 ou Galvalume AZ 150	30% (±5%)	Color 25 Max 60	F mínimo	100%
Max 60	Sistema de acabamento orgânico de alta camada aplicável na face externa ou na face interna, voltado para ambientes de maior agressividade.	30 µm de acabamento em poliuretano alifático +30 µm de primer poliuretano anticorrosivo	Zincagem Z 225, Z 275 ou Galvalume AZ 150	30% (±5%)	Color 25 Plus 35	F mínimo	100%
Ultra 27	Acabamento de alta durabilidade, voltado para aplicações arquitetônicas onde a estabilidade das cores e resistência a radiação ultra violeta seja importante.	21 µm de acabamento em PVDF +6 µm de primer epoxi anticorrosivo	Zincagem Z 225, Z 275 ou Galvalume AZ 150	30% (±5%)	Color 25 Ultra 27	F mínimo	100%

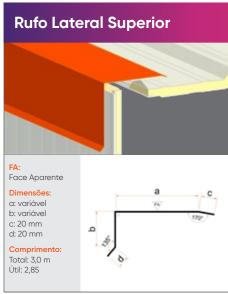
Cores Standard

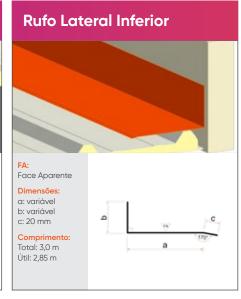

Pinturas Especiais

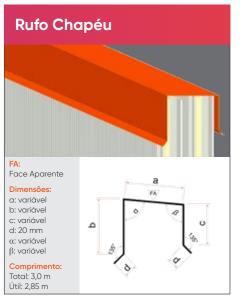


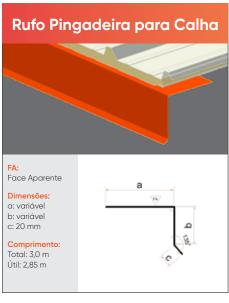

Testes Físicos				Testes G	uímicos				A	mbientes p	oara Aplic	ação Exterr			
د ق (nto 145)	74)	iina 17 14)	ր 83 (Հ	leta 54)	cia :es os	2 -	Rural ou	Normal		Mai	rítimo		Espe	ecial
Erichsen (grade com impacto)	Dobramento (flexão) (ASTM D 4145)	Impacto (ASTM 2794)	Câmara Salina (ASTM B 117 ASTM D 714)	Kesternich (SO2) (DIM 50018 NBR 8096)	C. Ultravioleta (CUV) (ASTM G 154)	Resistência a Agentes Químicos	Rural ou Normal	Normal	Severo	20 a 10 km	10 a 3 km	Beira Mar (< 3 km)	Misto	U.V. Forte	Particular
Bom	10 E sem fissura	Sem destaca- mento	700 horas	7 Ciclos	500 horas	Regular	\checkmark	√	×	?	×	×	×	×	×
Bom	10 E sem fissura	Sem destaca- mento	1000 horas	10 Ciclos	500 horas	Boa	\checkmark	√	×	√	?	×	×	×	?
Bom	10 E sem fissura	Sem destaca- mento	1200 horas	10 Ciclos	500 horas	Boa	\checkmark	√	?	√	?	?	?	?	?
Bom	10 E sem fissura	Sem destaca- mento	1500 horas	10 Ciclos	500 horas	Ótima	√	√	?	√	√	?	?	?	?
Bom	10 E sem fissura	Sem destaca- mento	2000 horas	10 Ciclos	500 horas	Ótima	√	√	?	√	√	?	?	✓	?

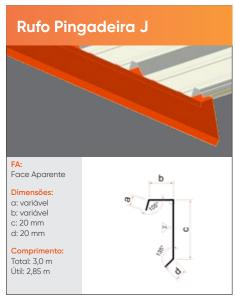

Arremates

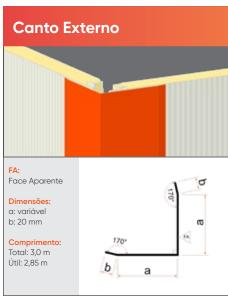


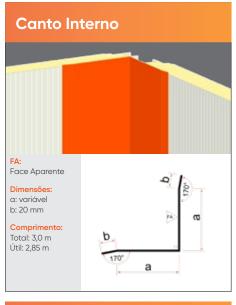


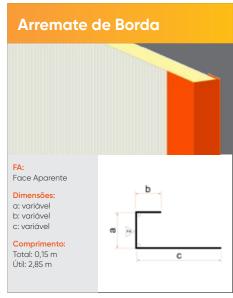


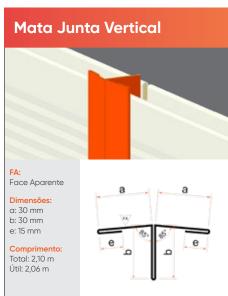


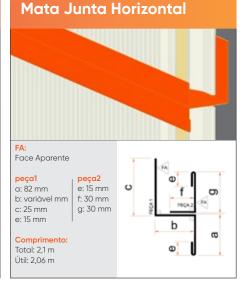


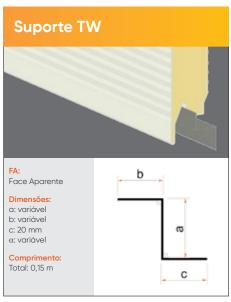










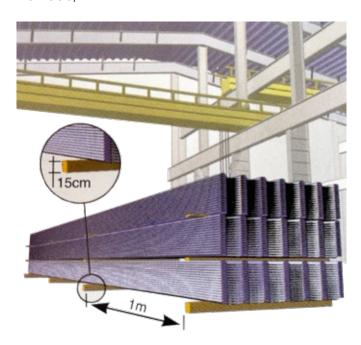


Recomendações Gerais

Recebimento

Conferir a Caraa:

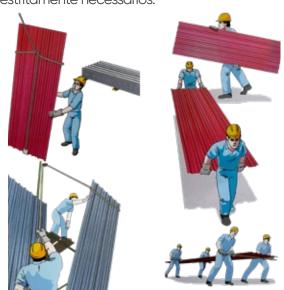
Não descarregar sob chuva;


Para o descarregamento, utilizar munck ou talhas com balancim e bandejas conforme croquis indicativos existentes nas embalagens;

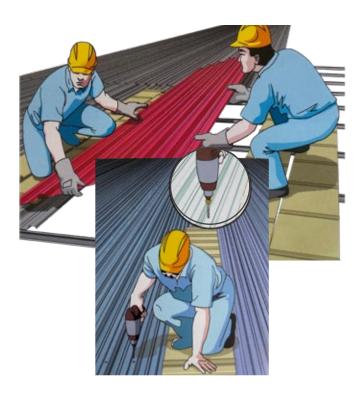
Evite a descarga manual pois poderá danificar a pintura (quando houver).



Armazenamento


- · Os produtos devem ser armazenados em lugar seco, coberto e ventilado;
- · Quando a utilização não for imediata, deve se evitar a estocagem totalmente horizontal. As pecas devem ser acomodadas sobre suportes com alturas diferentes, de modo que o fardo fique levemente inclinado;

Quando armazenar sob lona, inspecioná-la regularmente para verificar se há deslocamento ou rasgos que permitam a penetração de umidade.


- As telhas, painéis ou steel decks devem ser suspensos por fardos ou individualmente até a estrutura;
- Não arraste as peças sobre o piso, longarinas ou terças;
- Para peças longas, o manuseio deve ser feito por dois operários a cada dois metros de comprimento, um de cada lado, sobre um caibro central sob a peça.
- Para maior segurança dos montadores, o manuseio deve ser realizado utilizando EPI's, capacete, luvas e botas de segurança são estritamente necessários.

Montagem

- A montagem deve ser realizada por empresas idôneas, dentro das normas ABNT;
- A estrutura de suporte deve estar montada e devidamente alinhada;
- Para obter a sobreposição correta em telhados, é necessário que as fileiras de perfis sejam formadas no sentido vertical, ou seja, de baixo para cima até a parte superior do telhado e então a fileira sequinte;
- Use fixadores de costura a cada 0,50 m ao logo da sobreposição longitudinal das telhas e painéis de cobertura.
- Se as peças estiverem protegidas por filme de polietileno, este deve ser removido em até 7 dias do recebimento. Este material não pode ficar exposto ao calor do Sol nem ser armazenado além do prazo indicado;

- Atenção para a utilização de cinto de segurança para trabalho em altura; o tráfego sobre a cobertura deve ser o menor possível e realizado sobre passarelas provisórias de madeira;
- Execute retoques na pintura somente quando necessário e na menor área possível com pincel fino e tinta adequada;
- Não utilize serra de disco para cortar as telhas, pois a deposição de fagulhas na chapa provocará manchas indesejadas. Utilize preferencialmente tesoura de punção para o corte.
- Varra as peças ao final de cada dia de montagem, pois as limalhas provenientes de cortes e furações oxida-se sobre a superfície, danificando o acabamento;
- Parafusos autoperfurantes devem ser utilizados de acordo com as instruções dos seus fabricantes.

Manutenção e Uso

- As presentes instruções objetivam uma boa qualidade construtiva, porém as condições de durabilidade só podem ser reunidas desde que seja feito um controle das condições dos materiais a cada ano. Esta responsabilidade é do cliente final.
- A verificação inclui:
- Controle dos elementos estruturais, tal como deformações depressões, etc;

- Procura de pontos de corrosão nas telhas, estrutura e acessórios de fixação.
- Quanto a manutenção:
- A retirada do limo, vegetação e material diverso;
- A limpeza das fachadas e coberturas;
- O uso normal supõe para os telhados, uma circulação reduzida das diversas manutenções com todas as precauções para evitar as deformações permanentes com sobrecargas excessivas.

55 011 3065-3400 vendas@perfilor.com.br www.perfilor.com.br